

Полиакриламидный гель-электрофорез (ПААГ-электрофорез)

Спецпрактикум по биохимической генетике - Лекция 7

Старший преподаватель: PhD, Смекенов Изат Темиргалиевич

Кафедра молекулярной биологии и генетики

© ЦЕЛЬ ЛЕКЦИИ

Познакомить студентов с принципами, типами и методами проведения ПААГ-электрофореза для разделения белков, а также с интерпретацией результатов и практическими аспектами метода.

≴ ЗАДАЧИ

- Объяснить принцип разделения белков в полиакриламидном геле.
- ✓ Различать денатурирующий (SDS-PAGE) и неденатурирующий (native PAGE) электрофорез.
- Описывать роль SDS, β-меркаптоэтанола, акриламида, бис-акриламида, ТЕМЕД и ПСА (APS).
- ✓ Интерпретировать электрофореграммы (полосы, чистоту, наличие деградации, мультимеров).
- ✓ Объяснить, что такое градиентные гели, стек- и резольвинг-гели.
- ✓ Описывать методы окрашивания белков (Кумасси, серебрение, Western blot).

Я Ключевые термины

ПААГ, SDS-PAGE, native PAGE, денатурация белков, SDS, β-меркаптоэтанол, восстановление дисульфидных связей, акриламид, бис-акриламид, APS, TEMED, стек-гель, резольвинг-гель, молекулярный маркер, электрофореграмма, кумасси, серебряное окрашивание, Western blot, денатурирующие условия, молекулярная масса белков, градиентный гель.

Полиакриламидный гель (ПААГ)

- ✓ Состоит из акриламида и бис-акриламида, полимеризуется с помощью APS (аммоний персульфат) и TEMED.
- ✓ Гель может быть градиентным, что улучшает разделение белков разного размера.
- ✓ Структура геля делится на стек-гель (концентрирующий) и резольвинг-гель (разделяющий).

SDS-PAGE

- ✓ Используется для разделения белков по молекулярной массе в денатурированных условиях.
- У Белки денатурируются с SDS (анонионный детергент) и β-меркаптоэтанол (восстановление дисульфидных связей).
- ✓ Обеспечивает линейную зависимость миграции белка от логарифма его молекулярной массы.
- ✓ В качестве контроля используется молекулярный маркер.

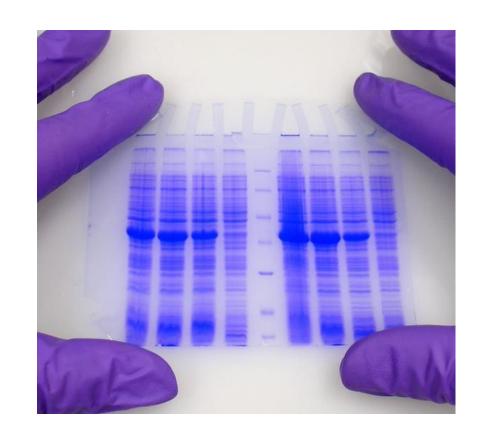
Нативный PAGE

- ✓ Белки сохраняют естественную конформацию и активность, разделяются по размеру, заряду и форме.
- ✓ Не используются денатурирующие агенты, такие как SDS или β-меркаптоэтанол.

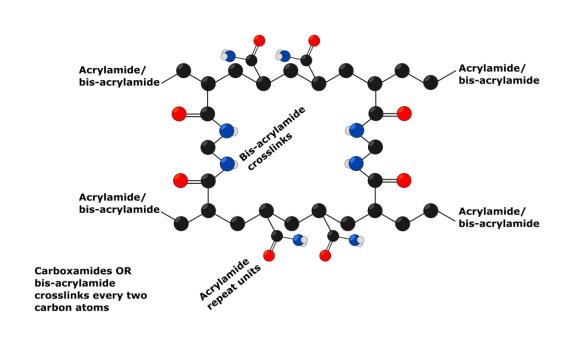
Окрашивание гелей

- ✓ Кумасси: быстрый, чувствительность среднего уровня.
- ✓ Серебряное окрашивание: высокая чувствительность, подходит для малых количеств белка.

Электрофореграмма

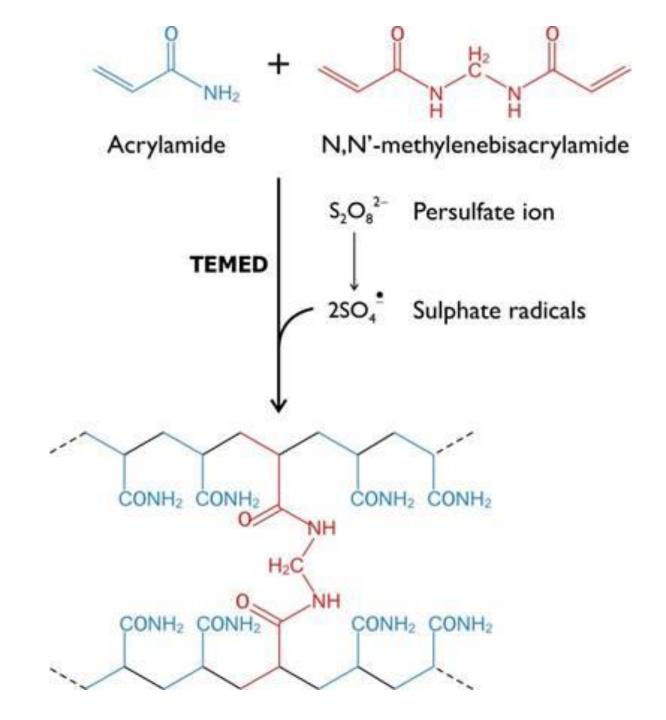

✓ Визуальное представление разделённых белков после окрашивания, позволяет оценить размер, чистоту и присутствие белка.

© ОСНОВНЫЕ ВОПРОСЫ


- 1) Как работает SDS-PAGE и зачем используются SDS и β-меркаптоэтанол?
- 2) В чем разница между нативным и денатурирующим PAGE?
- 3) Какие функции выполняют стек-гель и резольвинг-гель?
- 4) Для чего нужен градиентный гель и как он улучшает разделение белков?
- 5) Как правильно использовать молекулярный маркер для оценки молекулярной массы белка?
- 6) Чем различаются методы окрашивания гелей (кумасси и серебро)?
- 7) Как белки переносятся с геля на мембрану в Western blot и как детектируются?
- 8) Какие параметры позволяют оценить качество электрофореграммы?

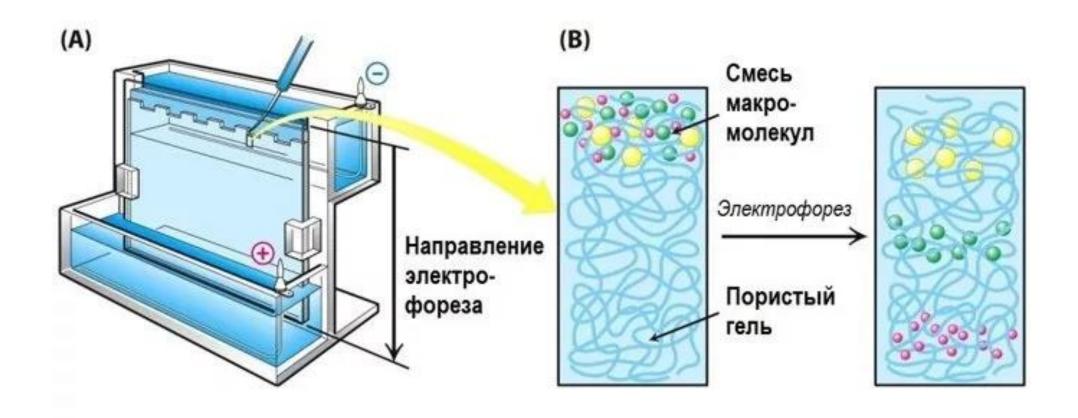
История разработки метода ПААГ-электрофореза (PAGE)

- Полиакриламидный гель-электрофорез (ПААГ, англ. PAGE PolyAcrylamide Gel Electrophoresis) стал одним из важнейших методов биохимии и молекулярной биологии, однако его развитие происходило постепенно и связано с несколькими ключевыми научными открытиями.
- Первые электрофоретические методы основаны на бумажной и крахмальной электрофорезе (Tiselius, 1937 — электрофорез в свободном растворе).
- Ключевой прорыв работа Davis (1964) и Ornstein & Davis (1964). Они ввели "дисковые гели" (disc electrophoresis) гель состоял из двух частей: стек-геля и резольвинг-геля.
- В 1970 г. Ульрих Леммли (U.K. Laemmli) опубликовал работу, описывающую SDS-PAGE денатурирующий электрофорез белков. Это стало золотым стандартом белкового анализа, применяемым до сих пор.
- Появление градиентных гелей, двумерного электрофореза (2D-PAGE) O'Farrell, 1975Усовершенствование методов окрашивания (Кумасси, серебрение, флуоресцентные красители)Использование метода перед Western blot (Towbin, 1979)


Особенности электрофореза в полиакриламидном геле

Полиакриламидный гель (ПААГ) обладает многими качествами идеального носителя

- ✓ Имея свойства молекулярного сита, он обеспечивает электрофоретическое разделение белковых смесей не только по заряду, но и по размеру и форме частиц.
- ✓ При электрофорезе в ПААГ крупные молекулы, размеры которых соизмеримы с диаметром пор геля, движутся медленнее, а мелкие молекулы свободно и быстро проходят через поры геля.
- ✓ ПААГ формируют путем сополимеризации акриламида, создающего линейную основу, и N,N'-метиленбисакриламида (BIS), служащего для поперечных «сшивок» линейных цепей.


- В результате сополимеризации образуется трехмерная сетка геля. Каждый второй углеродный атом линейной цепи содержит кислотную амидную группу, что обеспечивает гидрофильность полимера. В то же время ПААГ не содержит ионизируемых групп.
- Для сополимеризации нужны инициаторы и катализаторы (окислительно-восстановительные системы источники свободных радикалов). Чаще всего используют систему из двух компонентов:
- 1. персульфат аммония (ПСА, APS). Синоним - надсернокислый аммоний. Функция: инициатор полимеризации
- 2. N,N,N',N'тетраметилэтилендиамин (ТЕМЕД, TEMED). Функция: катализатор образования ПААГ

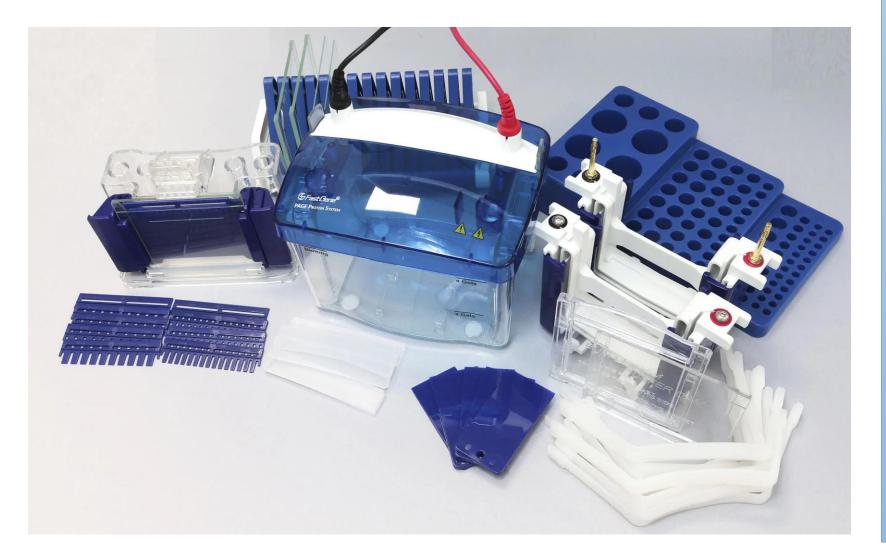
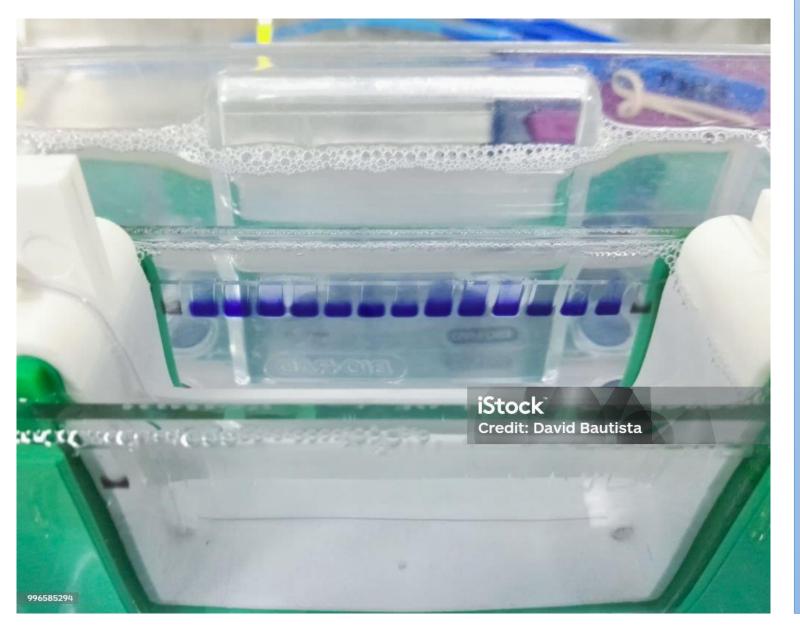

- Меняя концентрацию акриламида от **2 до 50%** можно задать определенную пористость геля. Например, диаметр пор в геле, содержащем 7.5% акриламида, **равен 5 нм**, а 30% акриламида **2 нм**.
- При выборе концентрации геля учитывают среднюю молекулярную массу (Mr) разделяемых веществ и форму их молекул.
- Если плотность геля не будет соответствовать молекулярной массе исследуемого белка, то он, либо не войдет в гель, либо будет мигрировать с очень высокой скоростью и, как следствие, выйдет из геля раньше времени.
- Также в качестве параметров, влияющих на эффективность разделения, в особенности белков с приблизительно равной молекулярной массой, можно отметить время проведения электрофореза, длину разгоночной дистанции (чем больше гель, тем выше разрешение), температура процесса (при пониженной температуре белковые зоны меньше размываются за счет диффузии).

Таблица 2 - Выбор концентрации акриламида для оптимального разрешения смеси белков		
Концентрация акриламида, % Линейный диапазон распределения, кДа		
15	12 – 43	
10	16 - 68	
7.5	36 – 94	
5	57 – 212	

Свойство	Значение
Нейтральность	не взаимодействует с белками
Контролируемый размер пор	регулируется % акриламида
Прочность	не рвётся, выдерживает 200+ В
Радиопрозрачность	удобно для радиоавтографии
Химическая стабильность	не распадается при длительном анализе



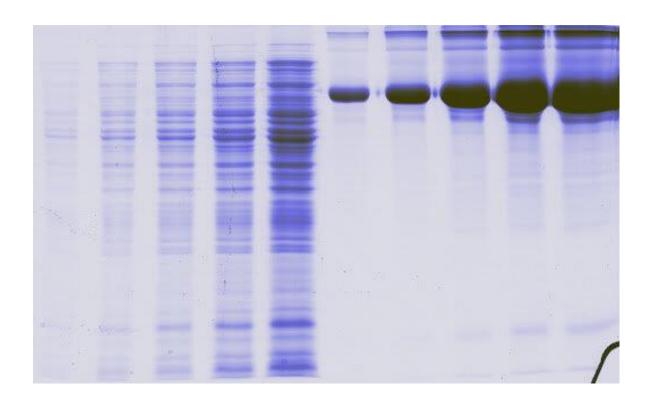
Система электрофореза на полиакриламидном геле FastGene®

- Камера для электрофореза с электродами (внутренняя часть)
- Крышка-каркас с электродами и кабелем питания
- Бак/резервуар для буфера
- Пластиковые «dummy» кассеты (short и long) для возможности использовать 1—4 геля одновременно
- Уплотнительные «U-sealing strips» разных размеров (для 10×8 см, 10×10 см гелей)
- Набор для приготовления гелей (hand-cast) толщиной 1 мм:основание для заливки гелядержатели стеклянных пластин
- прокладки/ущелья
- гребёнки (combs) для загрузки образцовстеклянные пластины
- Держатель стеклянных пластин и держатель пробирок

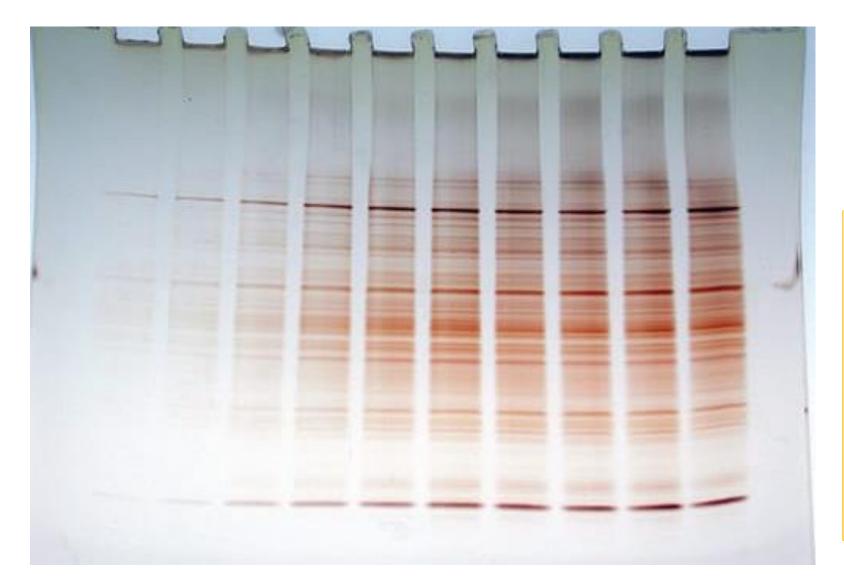
Результат нанесения белковых образцов в лугки ПААГ геля

Р Пошаговая техника загрузки

- 1.Заполните наконечник образцом, избегая пузырьков.
- 2.Погрузите наконечник на 1-2 мм в лунку — не касаясь стенок и дна, иначе лунка порвётся.
- 3. Медленно выдавливайте образец В СТОЛБИК БУФЕРА — НЕ в стенки лунки. Белок сам "падает" вниз за счёт плотности глицерина / сахара в загрузочном буфере.
- 4.Загрузите маркер молекулярной массы в первую или последнюю лунку. 5.Убедитесь, что в лунках нет пузырей — они нарушат миграцию.
- 6.После загрузки не трясите камеру чтобы образцы не смешались между собой.
- 7.Закройте крышку, подключите электроды и запускайте электрофорез.


Ошибка	Причина	Как избежать
Лунка порвалась	кончик пипетки упёрся в дно	вводить под углом, не глубже 1–2 мм
Образец «выплыл» из лунки	слишком быстрая подача	нажимать на плунжер медленно
Образец не опускается вниз	нет глицерина / сахара в буфере	использовать правильный loading buffer (30– 40% глицерин)
Образцы смешались	лунка переполнена	оставлять 1–2 мм до края
Пузырьки в лунке	резкое выдавливание	слегка коснуться стенки и медленно отпускать
Полосы «кривые»	гель сдвинулся или камера наклонена	проверять положение кассеты перед заливкой

- Для окрашивания белковых зон на ПААГэлектрофореграмме используют несколько универсальных методов. Для этого разделившиеся зоны белков фиксируют раствором уксусной кислоты (1 — 10%), смесью уксусной кислоты и этанола (реже — метанола), раствором ТХУ, насыщенным раствором сульфата аммония и окрашивают, используя раствор красителя.
- Фиксация предотвращает размывание зон из-за диффузии белковых молекул в геле. Используют такие красители, как амидочерный (амидошварц), кумасси ярко-синий (марок G250, R250), Zn/имидазол, нитрат серебра. Окраска полос происходит пропорционально количеству белка в зоне.
- Окраска и количество полос, соответствующих белкам, также зависят от чувствительности того или иного красителя. Так, нитрат серебра выявляет зоны с меньшим содержанием белка, чем кумасси.


Окраска с кумасси ярко-синий (марок G250, R250)

Окраска белков кумасси ярко-синим (Coomassie Brilliant Blue) — один из самых распространённых методов визуализации белков после электрофореза в полиакриламидном геле. Существует два основных варианта красителя: G-250 и R-250, каждый из которых имеет свои особенности.

- ❖ Coomassie R-250 обеспечивает более интенсивную и чёткую окраску, чаще используется в классическом варианте окрашивания. Этот краситель даёт тёмносинюю окраску белковых полос, но требует стадии обесцвечивания геля для снижения фона. Метод чувствителен примерно до 0,1−0,5 мкг белка на полосу. Подходит для стандартного анализа состава белков.
- Coomassie G-250 применяется в более чувствительной «blue-silver» или «colloidal» методике. Он даёт более низкий фон и может обнаруживать даже нанограммные количества белка. Цвет окраски менее интенсивный, но контрастный, что облегчает количественный анализ. Используется, в том числе, в аналитических гелях, где важна высокая чувствительность и количественная точность.

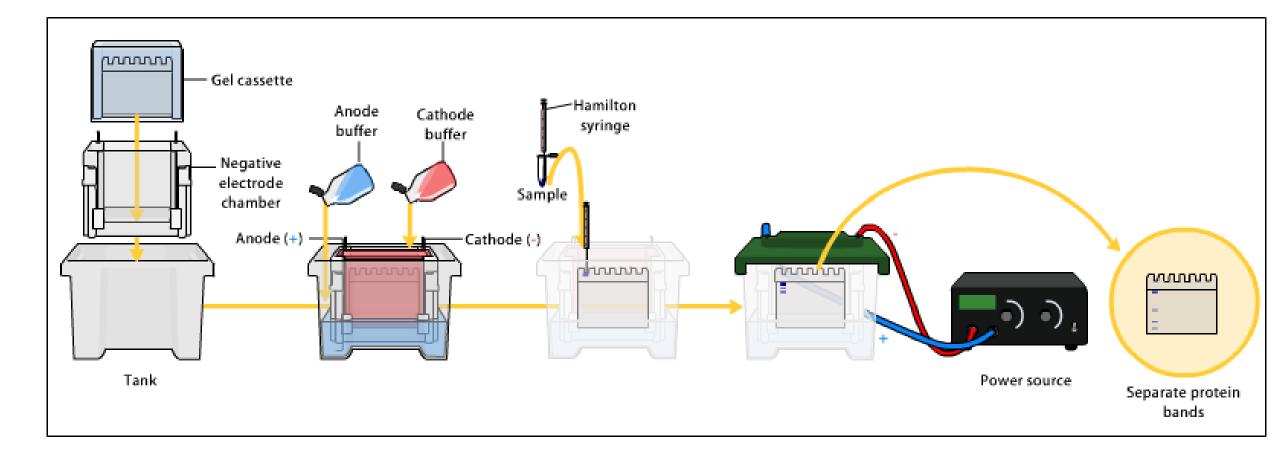

Окраска серебром

Окрашивание в 100 раз более чувствительно, чем окрашивание белка кумасси синим, и в 10 раз более чувствительно, чем бромистый этидий, для ДНК и РНК.

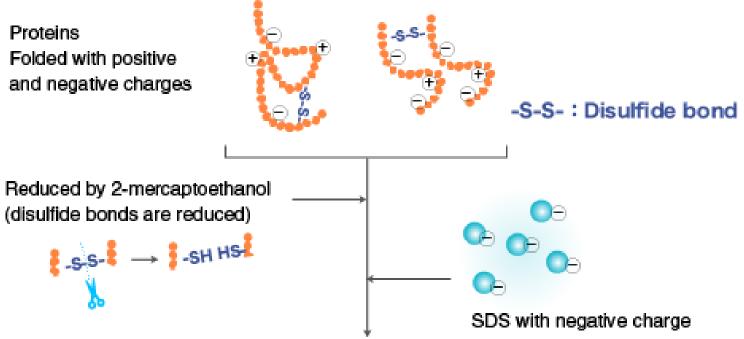
Функции

- •чувствительный к нанограммам
- •Окрашивает нуклеиновые кислоты и белки
- •Максимальная видимость: создает кристально чистый фон и резкие белковые полосы.
- •Нижний предел обнаружения: 1 нг/диапазон

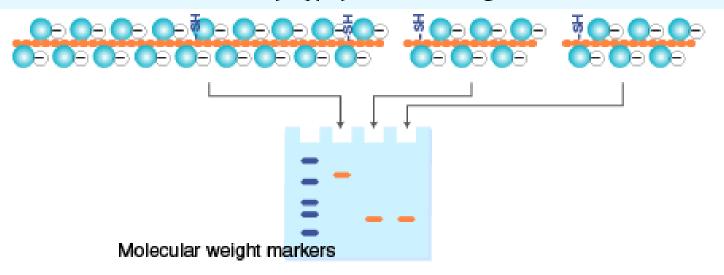
- Трис-глициновый электродный буферный раствор 1Х
- *Cocmae*: 25 мМ трис, 192 мМ глицин, 0.1% SDS, деионизированная вода.
- Для приготовления электрофорезного буфера развести в десять раз трис-глициновый стоковый раствор в мерной колбе и добавить SDS до конечной концентрации 0.1%. Довести деионизированной водой до требуемого объема.
- Лабораторная пропись для получения 1л раствора: 100 мл трисглицинового стокового раствора 10X, 10 мл 10%-ного SDS, деионизированная вода.


• Разделяющий гель:

- *Cocmae:* 62.5 мМ трис-HCl, pH 8.8, 46.5% бис-акриламид (30%, 29:1), 0.1% SDS, 0.5% персульфата аммония, 0.09% TEMED, деионизированная вода.
- Способ приготовления: Смешать все компоненты геля в указанном количестве
- Лабораторная пропись для получения 1 геля: 0.74 мл деионизированной воды, 1.50 мл 1М трис-HCl, pH 8.8, 2.00 мл раствора бис-акриламида (30%, 29:1), 40 мкл 10%-ного раствора SDS, 20 мкл 10%-ного раствора персульфата аммония, 4 мкл TEMED.


- Формирующий (концентрирующий) гель:
- *Cocmae*: 62.5 мМ трис-HCl, pH 6.8, 26.85% бис-акриламид (30%), 0.1 % SDS, 0.94% персульфата аммония, 0.2% TEMED, деионизированная вода.
- Способ приготовления: Смешать все компоненты геля в указанном количестве
- Лабораторная пропись для получения 1 геля: 0.8 мл деионизированной воды, 0.25 мл 1М Трис-HCl, pH 6.8, 0.4 мл раствора бис-акриламида (30%, 29:1), 20 мкл 10%-ного раствора SDS, 14 мкл 10%-ного раствора APS, 3 мкл TEMED

Растворы для приготовления 5% концетрирующего геля


Solution components	1 mL	2mL	3 mL	4mL	5mL	6mL	8 mL	10 mL
H2O	0.68	1.4	2.1	2.7	3.4	4.1	5.5	6.8
30% acrylamide mix	0.17	0.33	0.5	0.67	0.83	1.0	1.3	1.7
1.0M Tris (pH 6.8)	0.13	0.25	0.38	0.5	0.63	0.75	1.0	1.25
10% SDS	0.01	0.02	0.03	0.04	0.05	0.06	0.08	0.1
10% ammonium	0.01	0.02	0.03	0.04	0.05	0.06	0.08	0.1
persulfate								
TEMED	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.012

Proteins Folded with positive

Unfolded to a linear structure with negative charge proportional to the polypeptide chain length

5X SDS–PAGE sample buffer			
Working solution	Stock solution		
0.225 M Tris-Cl, pH 6.8	1 M Tris-Cl, pH 6.8		
5% SDS	SDS		
0.25 M DTT	1 M DTT		
10% 2-ME	2-ME		
1% Triton X-100	Triton X-100		
25% Glycerol	Glycerol		
0.01% Bromophenol blue	Bromophenol blue		

- Tris-HCl (обычно 62,5 мM, pH 6,8) Поддерживает стабильный pH, необходимый для денатурации и равномерного заряжения белков.
- SDS (sodium dodecyl sulfate, 2%) Анионный детергент, полностью денатурирует белки и покрывает их отрицательным зарядом пропорционально длине полипептидной цепи → разделение зависит от размера, а не заряда.
- Глицерин (10–20%) Увеличивает плотность раствора, чтобы образец опускался на дно лунки и не растекался.
- Бромфеноловый синий (примерно 0,01%) Отслеживающий краситель, позволяет видеть ход электрофореза (не связывается с белками).
- Бета-меркаптоэтанол (β-ME) или DTT (дитиотреитол) Редуктор, разрывает дисульфидные связи, обеспечивая полную денатурацию и разделение субъединиц белков.
- Вода / общий объём Растворитель, доведение компонентов до нужной концентрации.

ЛИТЕРАТУРА

- 1. Щелкунов С.Н. «Генетическая инженерия», Учебно-справочное пособие. 3-е изд. Новосибирск: СУИ, 2008 514 с
- 2. Жимулев И.Ф. «Общая и молекулярная генетика» учебное пособие. Новосибирск: СУИ, 2007.
- 3. Sambrook J., Russell D.W. Molecular Cloning: A Laboratory Manual (3rd edition), Cold Spring Harbor Laboratory Press, 2001, NY.
- 4. Маниатис Т., Фрих Э., Сэмбрук Д. Молекулярное клонирование. М.: Мир, 1984.
- 5. Sambrook J., Russell D.W. Molecular Cloning: A Laboratory Manual. 4th edition. Cold Spring Harbor Laboratory Press, 2012.
- 6. Brown T.A. Gene Cloning and DNA Analysis: An Introduction. 7th edition. Wiley-Blackwell, 2016.
- Lodish H., Berk A., Zipursky S.L. Molecular Cell Biology. 9th edition. W.H. Freeman, 2021.